|
一 前言 九宮格的求解常用方法有四種,分別是口訣法、Z字法、逆Z字法和羅伯特法。因?yàn)榍蠼夥椒ㄏ鄬?duì)較多,很多同學(xué)在記憶上產(chǎn)生了困惑。為了幫助同學(xué)們記憶上的方便,更高效的求解,本文案給出羅伯特法(即樓梯法)記憶技巧。 二 羅伯特法求解過程及實(shí)質(zhì) 點(diǎn)擊鏈接了解羅伯特法的求解實(shí)質(zhì)與具體過程。 1313 25宮格填數(shù)(羅伯特法即樓梯法)奇數(shù)幻方的基本填數(shù)法 1313 25宮格填數(shù)(羅伯特法即樓梯法)奇數(shù)幻方的基本填數(shù)法 三 九宮格中羅伯特法記憶技巧 利用羅伯特法將,1 2 3 4 5 6 7 8 9九個(gè)數(shù)字填入九宮格內(nèi)。結(jié)果如下圖所示。 ![]() 打開今日頭條查看圖片詳情 記憶特點(diǎn)(填數(shù)技巧)有二: ①按照?qǐng)D中的起點(diǎn)、終點(diǎn)及其圖中表示的方向(可以理解為N字的方向)按照數(shù)字由小到大的順序填入九個(gè)數(shù)。 ②2、8兩個(gè)數(shù)對(duì)調(diào)。 說明:口訣法可以理解為逆N字的方向。注意兩者的區(qū)別和聯(lián)系。 ![]() 打開今日頭條查看圖片詳情 三 羅伯特法鞏固練習(xí) 【練習(xí)1】如圖所示的九宮格,用羅伯特法填入不同的自然數(shù),滿足①九數(shù)三段兩等差排列時(shí),次小數(shù)與次大數(shù)之比13:5;②段內(nèi)差-5;③每行每列每條對(duì)角線上三個(gè)數(shù)之和都相等。 ![]() 打開今日頭條查看圖片詳情 (題后記)九宮格綜合練習(xí)(獨(dú)數(shù)+比例型) 【練習(xí)2】如圖所示的九宮格,用羅伯特法填入不同的自然數(shù),滿足①九數(shù)三段兩等差時(shí),第二段上三數(shù)之比為70:71:72;②段間差8 ;③每行每列每條對(duì)角線上三個(gè)數(shù)之和都相等。 ![]() 打開今日頭條查看圖片詳情 【練習(xí)3】如圖所示的九宮格,將九數(shù)11 14 15 17 18 19 21 22 25排列成三段兩等差的形式后,羅伯特法填入空格內(nèi),滿足每行每列每條對(duì)角線上三個(gè)數(shù)之和都相等。 ![]() 打開今日頭條查看圖片詳情 四 小結(jié) 為了加強(qiáng)對(duì)比更好的記憶,為了更快的查找,給出口訣法的記憶技巧(應(yīng)用)的相關(guān)鏈接。 【377】九宮格基礎(chǔ)練習(xí)專題(口訣法記憶技巧及其應(yīng)用) |
|
|