【原】新教材里潛在的高考題系列49:多變的正方體截面(不看絕對后悔)
新教材好文系列繼續(xù),今天說說教材里提到的正方體的截面問題.人教A版新教材必修第2冊第145頁,拓廣探索的第15題: 可以是等腰三角形,可以是等邊三角形,但都是銳角三角形.而且注意一個特征:截面三角形的三個頂點,在共點的三條棱上. 可以是平行四邊形,可以是菱形,可以是矩形,可以是正方形,可以是等腰梯形,也可以是一般梯形. 如圖,若四邊形EFGH是直角梯形,不妨設(shè)EF⊥FG. 又BB'⊥平面ABCD,所以EF//BB',進而有EF//平面BB'C. 因為平面EFGH∩平面BB'C=HG,所以EF//HG,這與梯形矛盾. 如圖所示,根據(jù)兩個平面平行的性質(zhì),有EF//HI,EI//FG,而正五邊形對邊并不平行,因此不可能截出正五邊形. 在所有的這些截面中,考察頻率最高的是,與體對角線垂直的截面.比如,2018年全國新課標(biāo)I卷的12題:這里的“與每條棱所在直線所成角都相等”的平面,就是與體對角線垂直的平面.還有一個特殊位置,就是在體對角線中點處的截面,此時截面是正六邊形. 寫到這里,留道作業(yè)吧,感興趣的朋友找找手感. 1.截面形狀為三角形的所有截面中,哪個截面面積最大,是多少? 2.截面形狀為四邊形的所有截面中,哪個截面面積最大,是多少?3.截面形狀為六邊形的所有截面中,哪個截面面積最大,是多少?大家讀我的系列文章,要連貫起來讀,前面的文章對后面有幫助.每天的文章可能只是一個小技巧,小方法,小結(jié)論,但是一旦連起來使用,就能解決一個復(fù)雜的問題.不管是老高考、還是新高考,導(dǎo)數(shù)綜合題作為絕對壓軸,穩(wěn)坐王者寶座,重要程度無需多言. 老左用15年教學(xué)經(jīng)驗做成的壓軸題專欄——《導(dǎo)數(shù)綜合要你命》已經(jīng)上線了.
這個專欄不答疑版定價1999元,目前早鳥價1099元,然后購買人數(shù)每到100的整數(shù)倍就提價100元,直到到達專欄原本的價格1999元為止. 老左專欄一貫的特點就是全面、系統(tǒng)、細(xì)致,自成一體,你的問題在專欄中都能找到解決方案. 如果您覺得老左的導(dǎo)數(shù)專欄對您有價值,遲買不如早買.
|