如圖,已知拋物線y=﹣x2+2x經(jīng)過原點O,且與直線y=x﹣2交于B,C兩點. (3)在直線BC上方的拋物線上是否存在點P,使△PBC的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;2·1·c·n·j·y(4)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.(1)把拋物線解析式化為頂點式可求得A點坐標,聯(lián)立拋物線與直線的解析式可求得B、C的坐標;(2)由A、B、C的坐標可求得AB2、BC2和AC2,由勾股定理的逆定理可判定△ABC是直角三角形;(3)過點P作PG∥y軸,交直線BC于點G,設出P點坐標,則可表示出G點坐標,從而可表示出PG的長,則可表示出△PBC的面積,利用二次函數(shù)的性質(zhì)可求得其最大值時P點坐標;(4)設出M、N的坐標,則可表示出MN和ON的長度,由相似三角形的性質(zhì)可得到關于N點坐標的方程可求得N點坐標.
|