电竞比分网-中国电竞赛事及体育赛事平台

分享

潘金生材料科學(xué)基礎(chǔ)(修訂版)筆記和考研真題詳解

 昵稱7B78c 2020-02-03


第1章?晶體學(xué)基礎(chǔ)

1.1?復(fù)習(xí)筆記

一、空間點陣

1.晶體特征和空間點陣概述

(1)晶體特征

晶體的一個基本特征是具有周期性。

(2)空間點陣

空間點陣是指用來描述晶體中原子或原子集團排列的周期性規(guī)律的在空間有規(guī)律分布的幾何點的集合。

2.晶胞、晶系和點陣類型

(1)晶胞

晶胞的定義

空間點陣可以看成是由最小的單元——平行六面體沿三維方向重復(fù)堆積(或平移)而成。這樣的平行六面體稱為晶胞。

點陣常數(shù)

a.描述晶胞的大?。喝龡l棱的長度a,b和c;

b.描述晶胞的形狀:棱之間的夾角α,β和γ。

選取晶胞的條件

a.能反映點陣的周期性;

b.能反映點陣的對稱性;

c.晶胞的體積最小。

(2)晶系

按照晶胞的大小和形狀的特點,或按照6個點陣常數(shù)之間的關(guān)系和特點,可以將各種晶體歸為7種晶系。

表1-1  7種晶系

(3)點陣類型

簡單三斜點陣(如圖1-1(1)所示);

簡單單斜點陣(如圖1-1(2)所示);

底心單斜點陣(如圖1-1(3)所示);

簡單斜方點陣(如圖1-1(4)所示);

底心斜方點陣(如圖1-1(5)所示);

體心斜方點陣(如圖1-1(6)所示);

面心斜方點陣(如圖1-1(7)所示);

六方點陣(如圖1-1(8)所示);

菱方點陣(三角點陣)(如圖1-1(9)所示);

簡單正方(或四方)點陣(如圖1-1(10)所示);

?體心正方(或四方)點陣(如圖1-1(11)所示);

?簡單立方點陣(如圖1-1(12)所示);

?體心立方點陣(如圖1-1(13)所示);

?面心立方點陣(如圖1-1(14)所示)。

圖1-1  14種空間點陣

(4)布拉維點陣與復(fù)式點陣

布拉維點陣:由等同點構(gòu)成的點陣;

復(fù)式點陣:由幾個布拉維點陣穿插而成的復(fù)雜點陣。

二、晶面指數(shù)和晶向指數(shù)

1.晶面指數(shù)和晶向指數(shù)

(1)晶面指數(shù)

將截距的倒數(shù)化成三個互質(zhì)的整數(shù)h,k,l,則(hkl)稱為待標(biāo)晶面的晶面指數(shù)。

(2)晶向指數(shù)

將晶向上除原點以外的任一點的坐標(biāo)x,y,z化成互質(zhì)整數(shù)u,v,w,得到晶向指數(shù)[uvw]。? (3)注意點

參考坐標(biāo)系可以平移,但不能轉(zhuǎn)動;

晶面指數(shù)和晶向指數(shù)可為正數(shù),亦可為負數(shù),但負號應(yīng)寫在數(shù)字上方;

若各指數(shù)同乘以異于零的數(shù)n,則晶面位向不變,晶向則或是同向(n>0),或是反向(n<0)。

(4)晶面族和晶向族的表示

在高對稱度的晶體中,往往存在一些位向不同、但原子排列情況完全相同的晶面。這些晶體學(xué)上等價的晶面就構(gòu)成一個晶面族,用{hkl}表示;

由晶體學(xué)上等價的晶向也構(gòu)成晶向族,用(uvw)表示。

    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多