|
這里介紹一個(gè)關(guān)鍵中間體1的合成 原始合成路線: 第一批交貨后。接下來(lái)考慮到工藝的robust,成本,原材料供應(yīng),需要開(kāi)發(fā)新的工藝。 第一步:suzuki 1,4-二氧六環(huán)做溶劑,會(huì)形成過(guò)氧化物,被ICH guideline歸類為有毒,水中的高溶解性導(dǎo)致難回收,所以考慮換掉它。經(jīng)過(guò)篩選,最終確定條件為:0.25 mol % Pd2dba3, 1 mol % X-Phos,1.5 equiv Cs2CO3, 2-MeTHF 回流4.5 h. 反應(yīng)中如果加入TBAB相轉(zhuǎn)移催化劑,收率有所增加,并且原料可以一直保持消耗完畢. 最終,2.4kg 化合物2以85%收率,99.4wt%,99.38 LCAP交貨. 2. SNAr Reaction to Prepare 1 此SNAr反應(yīng),一開(kāi)始采用7 eq 肼, 在異丙醇中65°C下進(jìn)行. 但是發(fā)現(xiàn)原料4溶解放熱, 溫度升高到90°C,有安全隱患. 因?yàn)殡乱兹?甚至在沒(méi)有氧氣的情況下都可以進(jìn)行, 所以必須進(jìn)行改進(jìn). 使用水做為溶劑,肼的水溶液會(huì)相對(duì)更實(shí)用,并且更安全. 反應(yīng)溫度需要提高到100°C才能增加原料4的溶解度, 降低到80°C雖然結(jié)果一樣,但是反應(yīng)時(shí)間延長(zhǎng)(10h vs 4h). 由于產(chǎn)品1不溶解于水,溫度降低下來(lái)以后, 就可以高純度地拿到固體. 在暴露空氣的過(guò)程中,主要生成了雜質(zhì)5. 大概有2%, 并且在此結(jié)晶的過(guò)程中,5可以被完全除去. 改進(jìn)以后, 以97%的收率, 99.6wt%, 100%LCAP的質(zhì)量交貨幾公斤. 在第二次交貨以后,就開(kāi)始考慮商業(yè)化進(jìn)程.重新優(yōu)化反應(yīng) 首先交貨Pd殘留不穩(wěn)定(2-720ppm), 并且通過(guò)統(tǒng)計(jì),22%生產(chǎn)API的費(fèi)用都消耗在合成化合物1,幾千美元/1kg,需要更加便宜的工藝。 繼續(xù)分析發(fā)現(xiàn),合成1的52%費(fèi)用用在了原料3. 它的大規(guī)模制備和分離難度比較大,于是開(kāi)始開(kāi)發(fā)新的偶聯(lián)試劑,化合物7被嘗試來(lái)替代原料3. 經(jīng)過(guò)優(yōu)化,確定條件如下: 反應(yīng)中發(fā)現(xiàn)了雜質(zhì)9,原始工藝可以通過(guò)控制使用1.2eq的原料3來(lái)控制9的生成,但是使用7的時(shí)候,雜質(zhì) 9的生成不穩(wěn)定,不同批次間含量經(jīng)常變化。 研究雜質(zhì)9的形成,從而有控制它的方案。通過(guò)慢慢加入原料7,使用離線HPLC進(jìn)行檢測(cè)雜質(zhì)9的生成。 檢測(cè)發(fā)現(xiàn)雜質(zhì)9的生成是在反應(yīng)末期,前期基本控制在很低水平。控制實(shí)驗(yàn)發(fā)現(xiàn),把產(chǎn)品4投入到標(biāo)準(zhǔn)反應(yīng)條件,可以高轉(zhuǎn)化率生成雜質(zhì)9.說(shuō)明雜質(zhì)9的生成來(lái)源于產(chǎn)品4.
于是通過(guò)控制7的使用量,讓氯化物過(guò)量,9可以得到控制,延長(zhǎng)反應(yīng)時(shí)間也沒(méi)有問(wèn)題。 小規(guī)模反應(yīng)的時(shí)候,先將各種物料混合,再加熱到80°C,規(guī)模小的時(shí)候可以迅速達(dá)到80°C. 但是大規(guī)模生產(chǎn)的時(shí)候,加熱比較緩慢,為了研究傳熱影響, 花費(fèi)3h緩慢加熱到80°C, 轉(zhuǎn)化率從99%掉到<75%, 并且有>25%的N-甲基吡唑生成, 可能在溫度比較低的時(shí)候,質(zhì)子化的速率大于偶聯(lián)速率.
確實(shí),化合物7在標(biāo)準(zhǔn)條件或者沒(méi)有Pd的條件下,都會(huì)質(zhì)子解。
但是在標(biāo)準(zhǔn)偶聯(lián)條件下,沒(méi)有或者很少有質(zhì)子化產(chǎn)物,這說(shuō)明提高溫度,偶聯(lián)速率就大大快于質(zhì)子化速率. 為了降低7的質(zhì)子解,將7加入到2和Pd的加熱的混合溶液。由于化合物7比較難溶于異丙醇/水,最終選擇加入7的漿液。室溫下,7在叔丁醇/水中是穩(wěn)定的,可以大于18h沒(méi)有變質(zhì)。 在開(kāi)發(fā)好條件以后,就是工藝后處理問(wèn)題了,分離純化4。反應(yīng)結(jié)束以后,加入甲苯作為共溶劑,可以降低產(chǎn)品損失,又可以降低有機(jī)相的含水量。其中還有有一個(gè)重要的要求就是除Pd。兩次20%亞硫酸氫鈉洗滌,Pd可以穩(wěn)定在100ppm以下(100g規(guī)模)。公斤級(jí)生產(chǎn),洗完后加個(gè)活性碳處理保證控制在50ppm一下。最后,使用0.5 M KF溶液洗滌除去硼相關(guān)副產(chǎn)物,然后水洗除去鹽。 單獨(dú)使用異丙醇或者實(shí)用異丙醇/甲苯都會(huì)有較大的損失。叔丁醇/正庚烷效果較好,極大的降低了損失,并且除雜效果很好。根據(jù)溶解度曲線,使用30%比例的叔丁醇/正庚烷結(jié)晶。
由于有叔丁醇/甲苯置換為叔丁醇/正庚烷的過(guò)程,為了評(píng)估30%叔丁醇/正庚烷如果沒(méi)有完全達(dá)到比例對(duì)母液損失的影響,一系列30-50%的叔丁醇/正庚烷被用來(lái)進(jìn)行結(jié)晶嘗試。研究發(fā)現(xiàn),在30-50%這個(gè)范圍內(nèi),4可以完全溶解,并且在降溫的時(shí)候結(jié)晶出來(lái)。 最后對(duì)花費(fèi)進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)盡管多了一步制備硼化物7,但是制備1的費(fèi)用降低了42%。這引起了合成API總費(fèi)用8%的降低。經(jīng)過(guò)研發(fā),可以高效的供應(yīng)化合物4. 學(xué)習(xí)思考:
原文:OPRD 2017 APSP 標(biāo)題:Synthesis of Hydrazinyl-Pyridine Intermediate: Phase–AppropriateDelivery DOI:10.1021/acs.oprd.7b00172 后處理: Synthesis of 4 To a clean and dry 650 L glass lined reactor containing nitrogen sparging dip tube was charged 2-butanol (96 L, 6 L/kg). The solution was sparged by bubbling nitrogen through a dipstick in the solution for 2 h at 25 ± 5 °C with agitation. The sparging was discontinued and nitrogen sweep was initiated. Xphos palladacycle (315 g, 0.43 mol) was charged under nitrogen atmosphere, and heated the solution to 75–80 °C. 2,3 Difluoro 5-chloropyridine (16 kg, 107 mol) was then charged to the reactor. A slurry of lithium boranate salt 7 (31.54 kg crude, 18.92 kg corrected assay, 100 mol) in sparged 2butanol (25.6 L, 1.6 L/kg) and water (25.6 L, 1.6 L/kg) was added slowly through an addition vessel. The reaction mixture was cooled to 50 °C and 8 L/kg of toluene was charged. After addition of 20% sodium bisulfite solution (64 L, 4 L/kg, the mixture was stirred for 3 h. The insoluble particles were filtered and rinsed with 50% 2-butanol toluene (6.4 L, 0.4 V). The filtrate was charged in the reactor and maintained at 50 °C. The aqueous layer was separated and organic layer stirred with 20% sodium bisulfite solution (64 L, 4 L/kg) for 13 h at 50 °C. The aqueous layer was once more separated and the organic layer stirred with 0.5 M KF (64 L, 4 L/kg) for 30 min at 50 °C. Separated the lower aqueous layer and the organic layer was stirred with water (64 L, 4 L/kg) at 50 °C for 30 min. The aqueous layer was separated and the organic layer stirred with charcoal (1.6 Kg, 10 wt/wt %) for 1 h at 45–50 °C. The solution was filtered through celite and washed with (960 L, 15 L/kg) of THF. The filtrate was concentrated under vacuum at 50 °C until residual volume reaches to 2 L/kg. 2-Butanol (112 L, 7 L/kg) was charged and concentrated until residual volume reached 3 L/kg. n-Heptane (112 L, 7 L/kg) was charged and heated the contents to 90 °C. Stirred and maintained for 15 min followed by cooling to 20 °C in 3 h. The solid was filtered and washed the solid with 30% 2-butanol/n-heptane (32 L, 2 L/kg) and nheptane (32 L, 2 L/kg). The cake was dried under vacuum for 8 h at 40 °C. Batch 1: 13.7 kg isolated product; 98.6 LCAP, 20.0 ppm Pd. Batch 2: |
|
|