|
任意波形的生成 (geneartion of arbitrary waveform) 在商業(yè),軍事等領(lǐng)域都有著重要的應(yīng)用,諸如空間光通信 (free-space optics communication), 高速信號(hào)處理 (high-speed signal processing),雷達(dá) (radar) 等。在任意波形生成后,如何評(píng)估生成的任意波形成為另外一個(gè)重要的話(huà)題。 scipy.optimize.leastsq假設(shè)有一組實(shí)驗(yàn)數(shù)據(jù),已知他們之間的函數(shù)關(guān)系:y=f(x),通過(guò)這些信息,需要確定函數(shù)中的一些參數(shù)項(xiàng)。例如,f 是一個(gè)線(xiàn)型函數(shù) f(x)=k*x+b,那么參數(shù) k 和 b 就是需要確定的值。如果這些參數(shù)用 p 表示的話(huà),那么就需要找到一組 p 值使得如下公式中的 S 函數(shù)最小: ![]() 這種算法被稱(chēng)之為最小二乘擬合 (least-square fitting)。scipy 中的子函數(shù)庫(kù) optimize 已經(jīng)提供實(shí)現(xiàn)最小二乘擬合算法的函數(shù) leastsq。下面是 leastsq 函數(shù)導(dǎo)入的方式:
波形數(shù)據(jù)導(dǎo)入在 Python科學(xué)計(jì)算——Numpy.genfromtxt 一文中,使用 numpy.genfromtxt 對(duì)數(shù)字示波器采集的三角波數(shù)據(jù)導(dǎo)入進(jìn)行了介紹,今天,就以 4GHz三角波 波形的擬合為案例介紹任意波形的擬合方法。
模型的選擇在 Python科學(xué)計(jì)算——如何構(gòu)建模型? 一文中,討論了如何構(gòu)建三角波模型。在標(biāo)準(zhǔn)三角波波形的基礎(chǔ)上添加了橫向,縱向的平移和伸縮特征參數(shù),最后添加了噪聲參數(shù)模擬了三角波幅度參差不齊的隨機(jī)性特征。但在波形擬合時(shí),并不是所有的特征參數(shù)都要納入考量,例如,噪聲參數(shù)應(yīng)是波形生成系統(tǒng)的固有特征,正因?yàn)樗拇嬖谑沟卯a(chǎn)生的波形存在瑕疵,因此,在進(jìn)行波形擬合并評(píng)估時(shí),不應(yīng)將噪聲參數(shù)納入考量,最終模型如下:
波形擬合在調(diào)用 scipy.optimize.leastsq 函數(shù)時(shí),需要構(gòu)建誤差函數(shù):
有時(shí)候,為了使圖片有更好的效果,需要對(duì)數(shù)據(jù)進(jìn)行一些處理:
leastsq 調(diào)用方式如下:
合理的設(shè)置 p0 可以減少程序運(yùn)行時(shí)間,因此,可以在運(yùn)行一次程序后,用擬合后的相應(yīng)數(shù)據(jù)對(duì) p0 進(jìn)行修正。 數(shù)據(jù)可視化在對(duì)波形進(jìn)行擬合后,調(diào)用 pylab 對(duì)擬合前后的數(shù)據(jù)進(jìn)行可視化:
![]() triangular waveform fitting
擬合效果評(píng)估均方根誤差 (root mean square error) 是一個(gè)很好的評(píng)判標(biāo)準(zhǔn),它是觀測(cè)值與真值偏差的平方和觀測(cè)次數(shù)n比值的平方根,在實(shí)際測(cè)量中,觀測(cè)次數(shù)n總是有限的,真值只能用最可信賴(lài)(最佳)值來(lái)代替.方根誤差對(duì)一組測(cè)量中的特大或特小誤差反映非常敏感,所以,均方根誤差能夠很好地反映出測(cè)量的精密度。 ![]() RMSE 用程序?qū)崿F(xiàn)如下:
擬合效果,模型參數(shù)輸出:
其他模型leastsq 函數(shù)適用于任何波形的擬合,下面就來(lái)介紹一些常用的其他波形: 方波
![]() square wave
高斯波形
![]() gaussian wave
|
|
|