|
理想模型分析: 在高頻段,阻抗由電阻成分構(gòu)成,隨著頻率升高,磁芯的磁導(dǎo)率降低,導(dǎo)致電感的電感量減小,感抗成分減小 但是,這時磁芯的損耗增加,電阻成分增加,導(dǎo)致總的阻抗增加,當(dāng)高頻信號通過鐵氧體時,電磁干擾被吸收并轉(zhuǎn)換成熱能的形式耗散掉。
所以,這個電路中,我們理想的模型是一個RC濾波電路:
假設(shè)我們有一個標(biāo)稱100歐姆的磁珠,就表示這個磁珠在100MHz時的電阻為100歐,在直流時為0歐,所以可以建立以下是用于快速理解的磁珠模型: 可見,在直流時,L將R短路,因此磁珠就表現(xiàn)為0歐。 而當(dāng)高頻的噪聲通過時,L近似為無窮大,因此磁珠就表現(xiàn)為一個100歐的電阻。 但是從實(shí)際測試的效果來看,并不是如我們所愿。 實(shí)際模型分析: 鐵氧體可以等效為一個電感與電阻并聯(lián),在低頻與高頻時分別呈現(xiàn)不同的特性。 磁珠在低頻段,阻抗由電感的感抗構(gòu)成,低頻時R很小,磁芯的磁導(dǎo)率較高,因此電感量較大,L起主要作用,電磁干擾被反射而受到抑制,并且這時磁芯的損耗較小,整個器件是一個低損耗、高Q特性的電感,這種電感容易造成諧振因此在低頻段,有時可能出現(xiàn)使用鐵氧體磁珠后干擾增強(qiáng)的現(xiàn)象。 如果我們的負(fù)載又比較小的時候,整個電路就是一個LC電路。下圖為磁珠的阻抗曲線。 如果我們選擇的電容,和磁珠正好是以下這種情況。并且開關(guān)電源的開關(guān)頻率又在諧振頻率附近。那么就出現(xiàn)了“諧振”,也就是輸入信號,在這個頻點(diǎn)被放大。
有的朋友經(jīng)過計算,覺得自己的電路諧振點(diǎn)應(yīng)該是小于開關(guān)頻率的,但是實(shí)際測試,還是比預(yù)想的頻率要大。這是為什么呢? 直流電壓值變大了,電容值變?。蛪悍秶詢?nèi))
當(dāng)電容公司開發(fā)產(chǎn)品時,他們會通過選擇材料的特性,使電容能夠在規(guī)定的溫度區(qū)間(第一個和第二個字母),工作在確定的變化范圍內(nèi)(第三個字母)。我正在使用的是X7R電容,它在-55°C到+125°C之間的變化不超過±15%。 當(dāng)我們在電容兩端加上電壓時,我們發(fā)現(xiàn)電壓就會導(dǎo)致電容值的變化(在耐壓范圍以內(nèi))。電容隨著設(shè)置條件的變化量是如此之大。我選擇的是一只工作在12V偏壓下的耐壓16V電容。數(shù)據(jù)表顯示,4.7-μF電容在這些條件下通常只提供1.5μF的容量。
對于某個給定的封裝尺寸和瓷片電容類型,電容的額定電壓似乎一般沒有影響。 |
|
|