电竞比分网-中国电竞赛事及体育赛事平台

分享

莫比烏斯帶、橡皮幾何學(xué)與拓?fù)鋵W(xué)

 拾麥 2014-07-11

莫比烏斯帶

公元1858年,莫比烏斯發(fā)現(xiàn):把一個扭轉(zhuǎn)180°后再兩頭粘接起來的紙條具有魔術(shù)般的性質(zhì)。因為,普通紙帶具有兩個面(即雙側(cè)曲面),一個正面,一個反面,兩個面可以涂成不同的顏色;而這樣的紙帶只有一個面(即單側(cè)曲面),一只小蟲可以爬遍整個曲面而不必跨過它的邊緣!我們把這種由莫比烏斯發(fā)現(xiàn)的神奇的單面紙帶,稱為“莫比烏斯帶”。
拿一張白的長紙條,把一面涂成黑色,然后把其中一端翻一個身,
如同右圖那樣粘成一個莫比烏斯帶。現(xiàn)在像圖中那樣用剪刀沿紙帶的中央把它剪開。你就會驚奇地發(fā)現(xiàn),紙帶不僅沒有一分為二,反而像圖中那樣剪出一個兩倍長的紙圈!
有趣的是:新得到的這個較長的紙圈,本身卻是一個雙側(cè)曲面,它的兩條邊界自身雖不打結(jié),但卻相互套在一起!為了讓讀者直觀地看到這一不太容易想象出來的事實,我們可以把上述紙圈,再一次沿中線剪開,這回可真的一分為二了!得到的是兩條互相套著的紙圈,而原先的兩條邊界,則分別包含于兩條紙圈之中,只是每條紙圈本身并不打結(jié)罷了。
比如旋轉(zhuǎn)三個半圈的帶子再剪開后會形成一個三葉結(jié)。剪開帶子之后再進(jìn)行旋轉(zhuǎn),然后重新粘貼則會變成數(shù)個Paradromic。
莫比烏斯帶常被認(rèn)為是無窮大符號“∞”的創(chuàng)意來源,因為如果某個人站在一個巨大的莫比烏斯帶的表面上沿著他能看到的“路”一直走下去,他就永遠(yuǎn)不會停下來。但是這是一個不真實的傳聞,因為“∞”的發(fā)明比莫比烏斯帶還要早。
莫比烏斯帶還有更為奇異的特性。一些在平面上無法解決的問題,卻不可思議地在莫比烏斯帶上獲得了解決!
比如在普通空間無法實現(xiàn)的手套易位問題:人左右兩手的手套雖然極為相像,但卻有著本質(zhì)的不同。我們不可能把左手的手套貼切地戴到右手上去;也不能把右手的手套貼切地戴到左手上來。無論你怎么扭來轉(zhuǎn)去,左手套永遠(yuǎn)是左手套,右手套也永遠(yuǎn)是右手套!不過,倘若自你把它搬到莫比烏斯帶上來,那么解決起來就易如反掌了。
自然界有許多物體也類似于手套那樣,它們本身具備完全相像的對稱部分,但一個是左手系的,另一個是右手系的,它們之間有著極大的不同。
“莫比烏斯帶”在生活和生產(chǎn)中已經(jīng)有了一些用途。例如,用皮帶傳送的動力機(jī)械的皮帶就可以做成“莫比烏斯帶”狀,這樣皮帶就不會只磨損一面了。如果把錄音機(jī)的磁帶做成“莫比烏斯帶”狀,就不存在正反兩面的問題了,磁帶就只有一個面了。

橡皮幾何學(xué)

莫比烏斯帶是一種拓?fù)鋱D形,什么是拓?fù)淠??拓?fù)渌芯康氖?a style="COLOR: rgb(19,110,194); TEXT-DECORATION: none" target="_blank">幾何圖形的一些性質(zhì),它們在圖形被彎曲、拉大、縮小或任意的變形下保持不變,只要在變形過程中不使原來不同的點重合為同一個點,又不產(chǎn)生新點。換句話說,這種變換的條件是:在原來圖形的點與變換了圖形的點之間存在著一一對應(yīng)的關(guān)系,并且鄰近的點還是鄰近的點。這樣的變換叫做拓?fù)渥儞Q。拓?fù)溆幸粋€形象說法——橡皮幾何學(xué)。因為如果圖形都是用橡皮做成的,就能把許多圖形進(jìn)行拓?fù)渥儞Q。例如一個橡皮圈能變形成一個圓圈或一個方圈。但是一個橡皮圈不能由拓?fù)渥儞Q成為一個阿拉伯數(shù)字8。因為不把圈上的兩個點重合在一起,圈就不會變成8,“莫比烏斯帶”正好滿足了上述要求。右下角是三角形莫比烏斯帶,左端綠色與右端黃色相連,扭曲的三角形莫比烏斯帶可以不斷循環(huán):綠--黃---紅---綠---黃---…。拓?fù)渥儞Q的不變性、不變量還有很多,這里不再介紹。
拓?fù)鋵W(xué)
拓?fù)鋵W(xué)的英文名是Topology,直譯是地志學(xué),也就是和研究地形、地貌相類似的有關(guān)學(xué)科。中國早期曾經(jīng)翻譯成“形勢幾何學(xué)”、“連續(xù)幾何學(xué)”、“一對一的連續(xù)變換群下的幾何學(xué)”,但是,這幾種譯名都不大好理解,1956年統(tǒng)一的《數(shù)學(xué)名詞》把它確定為拓?fù)鋵W(xué),這是按音譯過來的。
拓?fù)鋵W(xué)是幾何學(xué)的一個分支,但是這種幾何學(xué)又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關(guān)系以及它們的度量性質(zhì)。拓?fù)鋵W(xué)對于研究對象的長短、大小、面積、體積等度量性質(zhì)和數(shù)量關(guān)系都無關(guān)。
舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那么這兩個圖形叫做全等形。但是,在拓?fù)鋵W(xué)里所研究的圖形,在運動中無論它的大小或者形狀都發(fā)生變化。在拓?fù)鋵W(xué)里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數(shù)。

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多