初中數(shù)學(xué)幾何定理精華匯編
來源:中考網(wǎng)整合 文章作者:碧月風(fēng)荷 2012-11-16 10:27:09
1同角(或等角)的余角相等。 3對頂角相等。 5三角形的一個外角等于和它不相鄰的兩個內(nèi)角之和。 6在同一平面內(nèi)垂直于同一條直線的兩條直線是平行線。 7同位角相等,兩直線平行。 12等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合。 16直角三角形中,斜邊上的中線等于斜邊的一半。 19在角平分線上的點到這個角的兩邊距離相等。及其逆定理。 21夾在兩條平行線間的平行線段相等。夾在兩條平行線間的垂線段相等。 22一組對邊平行且相等、或兩組對邊分別相等、或?qū)蔷€互相平分的四邊形是平行四邊形。 24有三個角是直角的四邊形、對角線相等的平行四邊形是矩形。 25菱形性質(zhì):四條邊相等、對角線互相垂直,并且每一條對角線平分一組對角。 27正方形的四個角都是直角,四條邊相等。兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角。 34在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦、兩個弦心距中有一對相等,那么它們所對應(yīng)的其余各對量都相等。 36垂直于弦的直徑平分這條弦,并且平分弦所對弧。平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。 43直角三角形被斜邊上的高線分成的兩個直角三角形和原三角形相似。 46相似三角形對應(yīng)高線的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于相似比。相似三角形面積的比等于相似比的平方。 37圓內(nèi)接四邊形的對角互補,并且任何一個外角等于它的內(nèi)對角。 47切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。 48切線的性質(zhì)定理①經(jīng)過圓心垂直于切線的直線必經(jīng)過切點。 ②圓的切線垂直于經(jīng)過切點的半徑。 ③經(jīng)過切點垂直于切線的直線必經(jīng)過圓心。 49切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等。連結(jié)圓外一點和圓心的直線,平分從這點向圓所作的兩條切線所夾的角。 50弦切角定理 弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。弦切角等于它所夾的弧所對的圓周角。 51相交弦定理 ; 切割線定理 ; 割線定理 101圓是定點的距離等于定長的點的集合 102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合 103圓的外部可以看作是圓心的距離大于半徑的點的集合 104同圓或等圓的半徑相等 105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓 106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線 107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線 109定理 不在同一直線上的三個點確定一條直線 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對稱中心的中心對稱圖形 114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等 116定理 一條弧所對的圓周角等于它所對的圓心角的一半 117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑 119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 120定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角 121①直線L和⊙O相交 dr ②直線L和⊙O相切 d=r ③直線L和⊙O相離 dr 122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑 124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點 125推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心 126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對邊的和相等 128弦切角定理 弦切角等于它所夾的弧對的圓周角 129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 130相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項 132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項 133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 134如果兩個圓相切,那么切點一定在連心線上 135①兩圓外離 dR+r ②兩圓外切 d=R+r ③兩圓相交 R-rdR+r(Rr) ④兩圓內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dR-r(Rr) 136定理 相交兩圓的連心線垂直平分兩圓的公共弦 137定理 把圓分成n(n≥3): ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形 ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 138定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓 139正n邊形的每個內(nèi)角都等于(n-2)×180°/n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 142正三角形面積√3a/4 a表示邊長 143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144弧長計算公式:L=n∏R/180 145扇形面積公式:S扇形=n∏R/360=LR/2 146內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
|